Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cancer Res ; 83(11): 1768-1781, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36971511

RESUMO

SIGNIFICANCE: Multimers of the HPV genome are generated in cervical tumors replicating as extrachromosomal episomes, which is associated with deletion and rearrangement of the HPV genome and provides a mechanism for oncogenesis without integration.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Colo do Útero , Neoplasias do Colo do Útero/genética , Plasmídeos , Transformação Celular Neoplásica , Papillomaviridae/genética
2.
Sci Rep ; 12(1): 22622, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587184

RESUMO

Nonalcoholic steatohepatitis (NASH)-induced hepatocellular carcinoma (HCC) and its precursor, nonalcoholic fatty liver disease (NAFLD) are an unmet health issue due to widespread obesity. We assessed copy number changes of genes associated with hepatocarcinogenesis and oxidative pathways at a single-cell level. Eleven patients with NASH-HCC and 11 patients with NAFLD were included. Eight probes were analyzed using multiplex interphase fluorescence in situ hybridization (miFISH), single-cell imaging and phylogenetic tree modelling: Telomerase reverse transcriptase (TERT), C-Myc (MYC), hepatocyte growth factor receptor tyrosine kinase (MET), tumor protein 53 (TP53), cyclin D1 (CCND1), human epidermal growth factor receptor 2 (HER2), the fragile histidine triad gene (FHIT) and FRA16D oxidoreductase (WWOX). Each NASH-HCC tumor had up to 14 distinct clonal signal patterns indicating multiclonality, which correlated with high tumor grade. Changes frequently observed were TP53 losses, 45%; MYC gains, 36%; WWOX losses, 36%; and HER2 gains, 18%. Whole-genome duplications were frequent (82%) with aberrant tetraploid cells evolving from diploid ancestors. Non-tumorous NAFLD/NASH biopsies did not harbor clonal copy number changes. Fine mapping of NASH-HCC using single-cell multiplex FISH shows that branched tumor evolution involves genome duplication and that multiclonality increases with tumor grade. The loss of oxidoreductase WWOX and HER2 gains could be potentially associated with NASH-induced hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Neoplasias Hepáticas/patologia , Hibridização in Situ Fluorescente , Filogenia , Aberrações Cromossômicas , Proteínas de Neoplasias/genética , Ploidias , Oxirredutases/genética
3.
J Comput Biol ; 28(11): 1035-1051, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34612714

RESUMO

Aneuploidy and whole genome duplication (WGD) events are common features of cancers associated with poor outcomes, but the ways they influence trajectories of clonal evolution are poorly understood. Phylogenetic methods for reconstructing clonal evolution from genomic data have proven a powerful tool for understanding how clonal evolution occurs in the process of cancer progression, but extant methods so far have limited the ability to resolve tumor evolution via ploidy changes. This limitation exists in part because single-cell DNA-sequencing (scSeq), which has been crucial to developing detailed profiles of clonal evolution, has difficulty in resolving ploidy changes and WGD. Multiplex interphase fluorescence in situ hybridization (miFISH) provides a more unambiguous signal of single-cell ploidy changes but it is limited to profiling small numbers of single markers. Here, we develop a joint clustering method to combine these two data sources with the goal of better resolving ploidy changes in tumor evolution. We develop a probabilistic framework to maximize the probability of latent variables given the pre-clustered datasets, which we optimize via Markov chain Monte Carlo sampling combined with linear regression. We validate the method by using simulated data derived from a glioblastoma (GBM) case profiled by both scSeq and miFISH. We further apply the method to two GBM cases with scSeq and miFISH data by reconstructing a phylogenetic tree from the joint clustering results, demonstrating their synergistic value in understanding how focal copy number changes and WGD events can collectively contribute to tumor progression.


Assuntos
Neoplasias Encefálicas/genética , Biologia Computacional/métodos , Glioblastoma/genética , Hibridização in Situ Fluorescente/métodos , Análise de Célula Única/métodos , Anáfase , Aneuploidia , Evolução Clonal , Análise por Conglomerados , Evolução Molecular , Humanos , Cadeias de Markov , Método de Monte Carlo , Filogenia , Análise de Sequência de RNA
4.
Nat Genet ; 53(9): 1348-1359, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34493867

RESUMO

Lung cancer in never smokers (LCINS) is a common cause of cancer mortality but its genomic landscape is poorly characterized. Here high-coverage whole-genome sequencing of 232 LCINS showed 3 subtypes defined by copy number aberrations. The dominant subtype (piano), which is rare in lung cancer in smokers, features somatic UBA1 mutations, germline AR variants and stem cell-like properties, including low mutational burden, high intratumor heterogeneity, long telomeres, frequent KRAS mutations and slow growth, as suggested by the occurrence of cancer drivers' progenitor cells many years before tumor diagnosis. The other subtypes are characterized by specific amplifications and EGFR mutations (mezzo-forte) and whole-genome doubling (forte). No strong tobacco smoking signatures were detected, even in cases with exposure to secondhand tobacco smoke. Genes within the receptor tyrosine kinase-Ras pathway had distinct impacts on survival; five genomic alterations independently doubled mortality. These findings create avenues for personalized treatment in LCINS.


Assuntos
Variações do Número de Cópias de DNA/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , não Fumantes/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Receptores ErbB/genética , Feminino , Genoma/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Androgênicos/genética , Fatores de Risco , Fumar/genética , Enzimas Ativadoras de Ubiquitina/genética , Sequenciamento Completo do Genoma , Adulto Jovem
5.
Dis Model Mech ; 14(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569598

RESUMO

High-grade serous ovarian cancer (HGSOC) originates in the fallopian tube epithelium and is characterized by ubiquitous TP53 mutation and extensive chromosomal instability (CIN). However, direct causes of CIN, such as mutations in DNA replication and mitosis genes, are rare in HGSOC. We therefore asked whether oncogenic mutations that are common in HGSOC can indirectly drive CIN in non-transformed human fallopian tube epithelial cells. To model homologous recombination deficient HGSOC, we sequentially mutated TP53 and BRCA1 then overexpressed MYC. Loss of p53 function alone was sufficient to drive the emergence of subclonal karyotype alterations. TP53 mutation also led to global gene expression changes, influencing modules involved in cell cycle commitment, DNA replication, G2/M checkpoint control and mitotic spindle function. Both transcriptional deregulation and karyotype diversity were exacerbated by loss of BRCA1 function, with whole-genome doubling events observed in independent p53/BRCA1-deficient lineages. Thus, our observations indicate that loss of the key tumour suppressor TP53 is sufficient to deregulate multiple cell cycle control networks and thereby initiate CIN in pre-malignant fallopian tube epithelial cells. This article has an associated First Person interview with the first author of the paper.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Instabilidade Cromossômica , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Células Epiteliais/metabolismo , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Feminino , Humanos , Mutação/genética , Neoplasias Ovarianas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Cancers (Basel) ; 13(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34282768

RESUMO

PURPOSE: Older breast cancer patients are underrepresented in cancer research even though the majority (81.4%) of women dying of breast cancer are 55 years and older. Here we study a common phenomenon observed in breast cancer which is a large inter- and intratumor heterogeneity; this poses a tremendous clinical challenge, for example with respect to treatment stratification. To further elucidate genomic instability and tumor heterogeneity in older patients, we analyzed the genetic aberration profiles of 39 breast cancer patients aged 50 years and older (median 67 years) with either short (median 2.4 years) or long survival (median 19 years). The analysis was based on copy number enumeration of eight breast cancer-associated genes using multiplex interphase fluorescence in situ hybridization (miFISH) of single cells, and by targeted next-generation sequencing of 563 cancer-related genes. RESULTS: We detected enormous inter- and intratumor heterogeneity, yet maintenance of common cancer gene mutations and breast cancer specific chromosomal gains and losses. The gain of COX2 was most common (72%), followed by MYC (69%); losses were most prevalent for CDH1 (74%) and TP53 (69%). The degree of intratumor heterogeneity did not correlate with disease outcome. Comparing the miFISH results of diploid with aneuploid tumor samples significant differences were found: aneuploid tumors showed significantly higher average signal numbers, copy number alterations (CNAs) and instability indices. Mutations in PIKC3A were mostly restricted to luminal A tumors. Furthermore, a significant co-occurrence of CNAs of DBC2/MYC, HER2/DBC2 and HER2/TP53 and mutual exclusivity of CNAs of HER2 and PIK3CA mutations and CNAs of CCND1 and PIK3CA mutations were revealed. CONCLUSION: Our results provide a comprehensive picture of genome instability profiles with a large variety of inter- and intratumor heterogeneity in breast cancer patients aged 50 years and older. In most cases, the distribution of chromosomal aneuploidies was consistent with previous results; however, striking exceptions, such as tumors driven by exclusive loss of chromosomes, were identified.

7.
Bioinformatics ; 37(24): 4704-4711, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289030

RESUMO

MOTIVATION: Computational reconstruction of clonal evolution in cancers has become a crucial tool for understanding how tumors initiate and progress and how this process varies across patients. The field still struggles, however, with special challenges of applying phylogenetic methods to cancers, such as the prevalence and importance of copy number alteration (CNA) and structural variation events in tumor evolution, which are difficult to profile accurately by prevailing sequencing methods in such a way that subsequent reconstruction by phylogenetic inference algorithms is accurate. RESULTS: In this work, we develop computational methods to combine sequencing with multiplex interphase fluorescence in situ hybridization to exploit the complementary advantages of each technology in inferring accurate models of clonal CNA evolution accounting for both focal changes and aneuploidy at whole-genome scales. By integrating such information in an integer linear programming framework, we demonstrate on simulated data that incorporation of FISH data substantially improves accurate inference of focal CNA and ploidy changes in clonal evolution from deconvolving bulk sequence data. Analysis of real glioblastoma data for which FISH, bulk sequence and single cell sequence are all available confirms the power of FISH to enhance accurate reconstruction of clonal copy number evolution in conjunction with bulk and optionally single-cell sequence data. AVAILABILITY AND IMPLEMENTATION: Source code is available on Github at https://github.com/CMUSchwartzLab/FISH_deconvolution. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Software , Humanos , Hibridização in Situ Fluorescente , Filogenia , Algoritmos , Neoplasias/patologia
8.
Genome Med ; 13(1): 93, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034815

RESUMO

BACKGROUND: Many carcinomas have recurrent chromosomal aneuploidies specific to the tissue of tumor origin. The reason for this specificity is not completely understood. METHODS: In this study, we looked at the frequency of chromosomal arm gains and losses in different cancer types from the The Cancer Genome Atlas (TCGA) and compared them to the mean gene expression of each chromosome arm in corresponding normal tissues of origin from the Genotype-Tissue Expression (GTEx) database, in addition to the distribution of tissue-specific oncogenes and tumor suppressors on different chromosome arms. RESULTS: This analysis revealed a complex picture of factors driving tumor karyotype evolution in which some recurrent chromosomal copy number reflect the chromosome arm-wide gene expression levels of the their normal tissue of tumor origin. CONCLUSIONS: We conclude that the cancer type-specific distribution of chromosomal arm gains and losses is potentially "hardwiring" gene expression levels characteristic of the normal tissue of tumor origin, in addition to broadly modulating the expression of tissue-specific tumor driver genes.


Assuntos
Aneuploidia , Biomarcadores Tumorais , Mapeamento Cromossômico , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Metilação de DNA , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Mutação , Oncogenes , Especificidade de Órgãos/genética
9.
Clin Cancer Res ; 26(17): 4606-4615, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32522886

RESUMO

PURPOSE: The choice of therapy for patients with breast cancer is often based on clinicopathologic parameters, hormone receptor status, and HER2 amplification. To improve individual prognostication and tailored treatment decisions, we combined clinicopathologic prognostic data with genome instabilty profiles established by quantitative measurements of the DNA content. EXPERIMENTAL DESIGN: We retrospectively assessed clinical data of 4,003 patients with breast cancer with a minimum postoperative follow-up period of 10 years. For the entire cohort, we established genome instability profiles. We applied statistical methods, including correlation matrices, Kaplan-Meier curves, and multivariable Cox proportional hazard models, to ascertain the potential of standard clinicopathologic data and genome instability profiles as independent predictors of disease-specific survival in distinct subgroups, defined clinically or with respect to treatment. RESULTS: In Cox regression analyses, two parameters of the genome instability profiles, the S-phase fraction and the stemline scatter index, emerged as independent predictors in premenopausal women, outperforming all clinicopathologic parameters. In postmenopausal women, age and hormone receptor status were the predominant prognostic factors. However, by including S-phase fraction and 2.5c exceeding rate, we could improve disease outcome prediction in pT1 tumors irrespective of the lymph node status. In pT3-pT4 tumors, a higher S-phase fraction led to poorer prognosis. In patients who received adjuvant endocrine therapy, chemotherapy or radiotherapy, or a combination, the ploidy profiles improved prognostication. CONCLUSIONS: Genome instability profiles predict disease outcome in patients with breast cancer independent of clinicopathologic parameters. This applies especially to premenopausal patients. In patients receiving adjuvant therapy, the profiles improve identification of high-risk patients.


Assuntos
Neoplasias da Mama/genética , Instabilidade Genômica , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Quimioterapia Adjuvante/estatística & dados numéricos , Tomada de Decisão Clínica/métodos , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Mastectomia , Pessoa de Meia-Idade , Seleção de Pacientes , Prognóstico , Radioterapia Adjuvante/estatística & dados numéricos , Receptores de Estrogênio/análise , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/análise , Receptores de Progesterona/metabolismo , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco , Adulto Jovem
10.
Am J Pathol ; 190(8): 1643-1656, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32416097

RESUMO

Prognosis in young patients with breast cancer is generally poor, yet considerable differences in clinical outcomes between individual patients exist. To understand the genetic basis of the disparate clinical courses, tumors were collected from 34 younger women, 17 with good and 17 with poor outcomes, as determined by disease-specific survival during a follow-up period of 17 years. The clinicopathologic parameters of the tumors were complemented with DNA image cytometry profiles, enumeration of copy numbers of eight breast cancer genes by multicolor fluorescence in situ hybridization, and targeted sequence analysis of 563 cancer genes. Both groups included diploid and aneuploid tumors. The degree of intratumor heterogeneity was significantly higher in aneuploid versus diploid cases, and so were gains of the oncogenes MYC and ZNF217. Significantly more copy number alterations were observed in the group with poor outcome. Almost all tumors in the group with long survival were classified as luminal A, whereas triple-negative tumors predominantly occurred in the short survival group. Mutations in PIK3CA were more common in the group with good outcome, whereas TP53 mutations were more frequent in patients with poor outcomes. This study shows that TP53 mutations and the extent of genomic imbalances are associated with poor outcome in younger breast cancer patients and thus emphasize the central role of genomic instability vis-a-vis tumor aggressiveness.


Assuntos
Neoplasias da Mama/genética , Variações do Número de Cópias de DNA , Instabilidade Genômica , Mutação , Proteína Supressora de Tumor p53/genética , Adulto , Biomarcadores Tumorais/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
11.
Clin Cancer Res ; 26(13): 3468-3480, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32253233

RESUMO

PURPOSE: The standard treatment of patients with locally advanced rectal cancer consists of preoperative chemoradiotherapy (CRT) followed by surgery. However, the response of individual tumors to CRT is extremely diverse, presenting a clinical dilemma. This broad variability in treatment response is likely attributable to intratumor heterogeneity (ITH). EXPERIMENTAL DESIGN: We addressed the impact of ITH on response to CRT by establishing single-cell-derived cell lines (SCDCL) from a treatment-naïve rectal cancer biopsy after xenografting. RESULTS: Individual SCDCLs derived from the same tumor responded profoundly different to CRT in vitro. Clonal reconstruction of the tumor and derived cell lines based on whole-exome sequencing revealed nine separate clusters with distinct proportions in the SCDCLs. Missense mutations in SV2A and ZWINT were clonal in the resistant SCDCL, but not detected in the sensitive SCDCL. Single-cell genetic analysis by multiplex FISH revealed the expansion of a clone with a loss of PIK3CA in the resistant SCDCL. Gene expression profiling by tRNA-sequencing identified the activation of the Wnt, Akt, and Hedgehog signaling pathways in the resistant SCDCLs. Wnt pathway activation in the resistant SCDCLs was confirmed using a reporter assay. CONCLUSIONS: Our model system of patient-derived SCDCLs provides evidence for the critical role of ITH for treatment response in patients with rectal cancer and shows that distinct genetic aberration profiles are associated with treatment response. We identified specific pathways as the molecular basis of treatment response of individual clones, which could be targeted in resistant subclones of a heterogenous tumor.


Assuntos
Heterogeneidade Genética , Neoplasias Retais/etiologia , Neoplasias Retais/patologia , Análise de Célula Única , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Terapia Combinada , Hibridização Genômica Comparativa , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Neoplasias Retais/metabolismo , Neoplasias Retais/terapia , Transdução de Sinais , Resultado do Tratamento , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Neoplasia ; 21(4): 401-412, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30909073

RESUMO

Chromosomal aneuploidy is a defining feature of carcinomas and results in tumor-entity specific genomic imbalances. For instance, most sporadic colorectal carcinomas carry extra copies of chromosome 7, an aneuploidy that emerges already in premalignant adenomas, and is maintained throughout tumor progression and in derived cell lines. A comprehensive understanding on how chromosomal aneuploidy affects nuclear organization and gene expression, i.e., the nucleome, remains elusive. We now analyzed a cell line established from healthy colon mucosa with a normal karyotype (46,XY) and its isogenic derived cell line that acquired an extra copy of chromosome 7 as its sole anomaly (47,XY,+7). We studied structure/function relationships consequent to aneuploidization using genome-wide chromosome conformation capture (Hi-C), RNA sequencing and protein profiling. The gain of chromosome 7 resulted in an increase of transcript levels of resident genes as well as genome-wide gene and protein expression changes. The Hi-C analysis showed that the extra copy of chromosome 7 is reflected in more interchromosomal contacts between the triploid chromosomes. Chromatin organization changes are observed genome-wide, as determined by changes in A/B compartmentalization and topologically associating domain (TAD) boundaries. Most notably, chromosome 4 shows a profound loss of chromatin organization, and chromosome 14 contains a large A/B compartment switch region, concurrent with resident gene expression changes. No changes to the nuclear position of the additional chromosome 7 territory were observed when measuring distances of chromosome painting probes by interphase FISH. Genome and protein data showed enrichment in signaling pathways crucial for malignant transformation, such as the HGF/MET-axis. We conclude that a specific chromosomal aneuploidy has profound impact on nuclear structure and function, both locally and genome-wide. Our study provides a benchmark for the analysis of cancer nucleomes with complex karyotypes.


Assuntos
Aneuploidia , Núcleo Celular/genética , Expressão Gênica , Estudo de Associação Genômica Ampla , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Transformação Celular Neoplásica , Aberrações Cromossômicas , Mapeamento Cromossômico , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Humanos , Hibridização in Situ Fluorescente
13.
Int J Cancer ; 144(7): 1561-1573, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229897

RESUMO

Colorectal adenomas are common precancerous lesions with the potential for malignant transformation to colorectal adenocarcinoma. Endoscopic polypectomy provides an opportunity for cancer prevention; however, recurrence rates are high. We collected formalin-fixed paraffin-embedded tissue of 15 primary adenomas with recurrence, 15 adenomas without recurrence, and 14 matched pair samples (primary adenoma and the corresponding recurrent adenoma). The samples were analysed by array-comparative genomic hybridisation (aCGH) and single-cell multiplex interphase fluorescence in situ hybridisation (miFISH) to understand clonal evolution, to examine the dynamics of copy number alterations (CNAs) and to identify molecular markers for recurrence prediction. The miFISH probe panel consisted of 14 colorectal carcinogenesis-relevant genes (COX2, PIK3CA, APC, CLIC1, EGFR, MYC, CCND1, CDX2, CDH1, TP53, HER2, SMAD7, SMAD4 and ZNF217), and a centromere probe (CEP10). The aCGH analysis confirmed the genetic landscape typical for colorectal tumorigenesis, that is, CNAs of chromosomes 7, 13q, 18 and 20q. Focal aberrations (≤10 Mbp) were mapped to chromosome bands 6p22.1-p21.33 (33.3%), 7q22.1 (31.4%) and 16q21 (29.4%). MiFISH detected gains of EGFR (23.6%), CDX2 (21.8%) and ZNF217 (18.2%). Most adenomas exhibited a major clone population which was accompanied by multiple smaller clone populations. Gains of CDX2 were exclusively seen in primary adenomas with recurrence (25%) compared to primary adenomas without recurrence (0%). Generation of phylogenetic trees for matched pair samples revealed four distinct patterns of clonal dynamics. In conclusion, adenoma development and recurrence are complex genetic processes driven by multiple CNAs whose evaluations by miFISH, with emphasis on CDX2, might serve as a predictor of recurrence.


Assuntos
Adenoma/genética , Fator de Transcrição CDX2/genética , Neoplasias Colorretais/genética , Recidiva Local de Neoplasia/genética , Análise de Célula Única/métodos , Idoso , Biomarcadores Tumorais/genética , Aberrações Cromossômicas , Evolução Clonal , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade
14.
Clin Cancer Res ; 24(20): 4997-5011, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29967250

RESUMO

Purpose: Patients with inflammatory bowel diseases, that is, ulcerative colitis and Crohn's disease (CD), face an increased risk of developing colorectal cancer (CRC). Evidence, mainly from ulcerative colitis, suggests that TP53 mutations represent an initial step in the progression from inflamed colonic epithelium to CRC. However, the pathways involved in the evolution of CRC in patients with CD are poorly characterized.Experimental Design: Here, we analyzed 73 tissue samples from 28 patients with CD-CRC, including precursor lesions, by targeted next-generation sequencing of 563 cancer-related genes and array-based comparative genomic hybridization. The results were compared with 24 sporadic CRCs with similar histomorphology (i.e., mucinous adenocarcinomas), and to The Cancer Genome Atlas data (TCGA).Results: CD-CRCs showed somatic copy-number alterations (SCNAs) similar to sporadic CRCs with one notable exception: the gain of 5p was significantly more prevalent in CD-CRCs. CD-CRCs had a distinct mutation signature: TP53 (76% in CD-CRCs vs. 33% in sporadic mucinous CRCs), KRAS (24% vs. 50%), APC (17% vs. 75%), and SMAD3 (3% vs. 29%). TP53 mutations and SCNAs were early and frequent events in CD progression, while APC, KRAS, and SMAD2/4 mutations occurred later. In four patients with CD-CRC, at least one mutation and/or SCNAs were already present in non-dysplastic colonic mucosa, indicating occult tumor evolution.Conclusions: Molecular profiling of CD-CRCs and precursor lesions revealed an inflammation-associated landscape of genome alterations: 5p gains and TP53 mutations occurred early in tumor development. Detection of these aberrations in precursor lesions may help predicting disease progression and distinguishes CD-associated from sporadic colorectal neoplasia. Clin Cancer Res; 24(20); 4997-5011. ©2018 AACR.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Colorretais/etiologia , Doença de Crohn/complicações , Doença de Crohn/genética , Variação Genética , Genômica , Adulto , Biomarcadores , Neoplasias Colorretais/patologia , Hibridização Genômica Comparativa , Doença de Crohn/patologia , Progressão da Doença , Feminino , Genômica/métodos , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Adulto Jovem
15.
Carcinogenesis ; 39(8): 993-1005, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-29800151

RESUMO

Intratumor heterogeneity is a major challenge in cancer treatment. To decipher patterns of chromosomal heterogeneity, we analyzed six colorectal cancer cell lines by multiplex interphase FISH (miFISH). The mismatch-repair-deficient cell lines DLD-1 and HCT116 had the most stable copy numbers, whereas aneuploid cell lines (HT-29, SW480, SW620 and H508) displayed a higher degree of instability. We subsequently assessed the clonal evolution of single cells in two colorectal carcinoma cell lines, SW480 and HT-29, which both have aneuploid karyotypes but different degrees of chromosomal instability. The clonal compositions of the single cell-derived daughter lines, as assessed by miFISH, differed for HT-29 and SW480. Daughters of HT-29 were stable, clonal, with little heterogeneity. Daughters of SW480 were more heterogeneous, with the single cell-derived daughter lines separating into two distinct populations with different ploidy (hyper-diploid and near-triploid), morphology, gene expression and tumorigenicity. To better understand the evolutionary trajectory for the two SW480 populations, we constructed phylogenetic trees which showed ongoing instability in the daughter lines. When analyzing the evolutionary development over time, most single cell-derived daughter lines maintained their major clonal pattern, with the exception of one daughter line that showed a switch involving a loss of APC. Our meticulous analysis of the clonal evolution and composition of these colorectal cancer models shows that all chromosomes are subject to segregation errors, however, specific net genomic imbalances are maintained. Karyotype evolution is driven by the necessity to arrive at and maintain a specific plateau of chromosomal copy numbers as the drivers of carcinogenesis.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/genética , Evolução Molecular , Linhagem Celular Tumoral , Instabilidade Cromossômica , Aberrações Cromossômicas , Evolução Clonal , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Cariótipo , Filogenia
16.
Genes Chromosomes Cancer ; 57(4): 165-175, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29181861

RESUMO

The clinical course of breast cancer varies from one patient to another. Currently, the choice of therapy relies on clinical parameters and histological and molecular tumor features. Alas, these markers are informative in only a subset of patients. Therefore, additional predictors of disease outcome would be valuable for treatment stratification. Extensive studies showed that the degree of variation of the nuclear DNA content, i.e., aneuploidy, determines prognosis. Our aim was to further elucidate the molecular basis of aneuploidy. We analyzed five diploid and six aneuploid tumors with more than 20 years of follow-up. By performing FISH with a multiplexed panel of 10 probes to enumerate copy numbers in individual cells, and by sequencing 563 cancer-related genes, we analyzed how aneuploidy is linked to intratumor heterogeneity. In our cohort, none of the patients with diploid tumors died of breast cancer during follow-up in contrast to four of six patients with aneuploid tumors (mean survival 86.4 months). The FISH analysis showed markedly increased genomic instability and intratumor heterogeneity in aneuploid tumors. MYC gain was observed in only 20% of the diploid cancers, while all aneuploid cases showed a gain. The mutation burden was similar in diploid and aneuploid tumors, however, TP53 mutations were not observed in diploid tumors, but in all aneuploid tumors in our collective. We conclude that quantitative measurements of intratumor heterogeneity by multiplex FISH, detection of MYC amplification and TP53 mutation could augment prognostication in breast cancer patients.


Assuntos
Aneuploidia , Neoplasias da Mama/genética , Mutação , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , DNA de Neoplasias/genética , Feminino , Citometria de Fluxo , Amplificação de Genes , Humanos , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/metabolismo
17.
BMC Res Notes ; 10(1): 560, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29110683

RESUMO

BACKGROUND: Mortality rates of pancreatic cancer remain high, which is mainly due to advanced disease and metastasis. We hypothesized that genomic copy number alterations are enriched in metastatic cells compared to autologous primary tumors, which may inform on cancer-related pathways possibly serving as potential targets for specific therapies. We investigated 18 pancreatic ductal adenocarcinomas, including 39 lymph node and 5 distant metastases after surgical resection. Analysis was performed with array-based comparative genomic hybridization (aCGH). RESULTS: Metastases acquire a higher frequency of copy number alterations with the highest in distant metastasis (median = 42, lymph node metastases: median = 23, primary tumors: median = 17). In lymph node metastases, gains were prevalent on chromosome bands 8q11.23-q24.3, 12q14.1, 17p12.1, 21q22.12, and losses on 3p21.31, 4p14, 8p23.3-p11.21,17p12-11.2. Genes on amplified regions are involved in cancer-related pathways such as WNT-signaling, also involved in metastasis. CONCLUSIONS: Pancreatic cancers show a high degree of intratumor heterogeneity, which could lead to resistance of chemotherapy and worse outcome. ACGH analysis reveals regions preferentially gained or lost in synchronous metastases encoding for genes involved in cancer-related pathways, which could lead to novel therapeutic opportunities.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Hibridização Genômica Comparativa , Metástase Linfática/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Variações do Número de Cópias de DNA/genética , Humanos , Pessoa de Meia-Idade , Penetrância , Neoplasias Pancreáticas
18.
PLoS One ; 11(6): e0158569, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362268

RESUMO

Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Bases de Dados Genéticas , Hibridização in Situ Fluorescente/métodos , Neoplasias do Colo do Útero/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Humanos , Ploidias , Neoplasias do Colo do Útero/patologia
19.
Int J Cancer ; 138(1): 98-109, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26175310

RESUMO

Oral tongue squamous cell carcinoma (OTSCC) is associated with poor prognosis. To improve prognostication, we analyzed four gene probes (TERC, CCND1, EGFR and TP53) and the centromere probe CEP4 as a marker of chromosomal instability, using fluorescence in situ hybridization (FISH) in single cells from the tumors of sixty-five OTSCC patients (Stage I, n = 15; Stage II, n = 30; Stage III, n = 7; Stage IV, n = 13). Unsupervised hierarchical clustering of the FISH data distinguished three clusters related to smoking status. Copy number increases of all five markers were found to be correlated to non-smoking habits, while smokers in this cohort had low-level copy number gains. Using the phylogenetic modeling software FISHtrees, we constructed models of tumor progression for each patient based on the four gene probes. Then, we derived test statistics on the models that are significant predictors of disease-free and overall survival, independent of tumor stage and smoking status in multivariate analysis. The patients whose tumors were modeled as progressing by a more diverse distribution of copy number changes across the four genes have poorer prognosis. This is consistent with the view that multiple genetic pathways need to become deregulated in order for cancer to progress.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Variações do Número de Cópias de DNA , Filogenia , Neoplasias da Língua/genética , Neoplasias da Língua/mortalidade , Adulto , Idoso , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Feminino , Papillomavirus Humano 16 , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Infecções por Papillomavirus , Prognóstico , Fatores de Risco , Análise de Sobrevida , Neoplasias da Língua/patologia , Neoplasias da Língua/virologia , Adulto Jovem
20.
Bioinformatics ; 31(12): i258-67, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26072490

RESUMO

MOTIVATION: Phylogenetic algorithms have begun to see widespread use in cancer research to reconstruct processes of evolution in tumor progression. Developing reliable phylogenies for tumor data requires quantitative models of cancer evolution that include the unusual genetic mechanisms by which tumors evolve, such as chromosome abnormalities, and allow for heterogeneity between tumor types and individual patients. Previous work on inferring phylogenies of single tumors by copy number evolution assumed models of uniform rates of genomic gain and loss across different genomic sites and scales, a substantial oversimplification necessitated by a lack of algorithms and quantitative parameters for fitting to more realistic tumor evolution models. RESULTS: We propose a framework for inferring models of tumor progression from single-cell gene copy number data, including variable rates for different gain and loss events. We propose a new algorithm for identification of most parsimonious combinations of single gene and single chromosome events. We extend it via dynamic programming to include genome duplications. We implement an expectation maximization (EM)-like method to estimate mutation-specific and tumor-specific event rates concurrently with tree reconstruction. Application of our algorithms to real cervical cancer data identifies key genomic events in disease progression consistent with prior literature. Classification experiments on cervical and tongue cancer datasets lead to improved prediction accuracy for the metastasis of primary cervical cancers and for tongue cancer survival. AVAILABILITY AND IMPLEMENTATION: Our software (FISHtrees) and two datasets are available at ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees.


Assuntos
Evolução Molecular , Dosagem de Genes , Modelos Genéticos , Neoplasias/genética , Algoritmos , Progressão da Doença , Feminino , Genômica , Humanos , Filogenia , Software , Neoplasias do Colo do Útero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...